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A. ACCOMPLISHMENTS TO DATE

The following is a brief summary of accomplishments to date under Grant

AFOSR-84-0131.

1. The Reduced Basis Method for Algebraic Systems

1.1 Subspace-Projector Pairings. Implementation of the reduced basis method

requires the choice of a subspace and a projector onto that subspace. For an

arbitrarily chosen subspace-projector pair, existence of the true solution

curve is not sufficient to guarantee the existence of the corresponding

reduced basis solution curve. However, when the former curve exists, it has

been shown ir-fAl] that there are infinitely many subspace-projector pairings, r

each utilizing an arbitrarily selected subspace, under which the reduced basis

solution curve exists. Moreover, the resulting error estimates are of the

same nature as those that apply in the more familiar case when a subspace is

paired with its orthogonal projector.

1.2 Reduced Basis Additive Correction Methods. Additive Correction Methods

have been considered by a number of authors as a means of accelerating slowly

converging iterative processes (see, for example, [A2]-[A4]). Furthermore, it

has been recognized that additive correction is central to the basic idea of

multigrid methods [A4-A5]. Although the reduced basis method in its original

form appears to have little in common with additive correction, a class of

such methods has been developed using the reduced basis concept [1). Further-

more, it has been shown that in their "two-grid" form, certain multigrid
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methods are special cases of this class. The reduced basis point of view pro-

vides insight into the error reduction capabilit, vf such multigrid methods

and suggests additive correction variants that may be more effective than

those commonly employed in multigrid methods.

2. The Reduced Basis Method for Systems of Differential Equations

Error Estimates for the reduced basis method solution of differential and

differential-algebraic equation systems are contained in the thesis [2].

These estimates are local in the following two senses. First, they apply on a

nontrivial, L.-t possibly very small interval. Second, they require some point

of the reduced curve to lie on the true solution curve. The recent research

reported in [18] has removed the interval length restriction in the differen-

tial equation case and extended the error analysis to global versions of the

methods in [2], thus effectively eliminating the second local aspect of that

work. Furthermore, this work also incorporates the effects of the errors

resulting from the numerical integration of the reduced basis ODE systems.

3. Two-Fluid, Two-Phase Flow

Additional theoretical results on the nature of the void fraction have

been incorporated into [A6] resulting in the revision [3].

z

4. Binay Gas Mixture Flow Through Combustors

In an attempt to reduce the development cycle costs associated with

design of gas turbine engine combustors, mathematical combustor models are
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being employed to provide information about performance trends and to predict

velocity, pressure and thermodynamic property profiles in simulated practical

combustion environments. It has been demonstrated that the dual variable

method can be applied to the predictive model of the fluid dynamics associated

with an axially symmetric centerbody combustor being studied at WPAFB. This

work appeared in [4].

5. Error Estimation and Singularities

The central theme of this project concerns the discretization error for

general nonlinear, parameter-dependent equations of the form F(z,A) - 0 where

F is a nonlinear mapping, z is the state variable representing the solu-

tion, and A is a vector of parameters that characterize intrinsic properties

of the system or extrinsic quantities influencing its behavior. In the case

of fluid problems, the operator F may be generated, for example, by the 16

time-independent Navier Stokes equations together with the necessary boundary

conditions.

In general, the solution set of such parametrized equations constitutes a

differentiable manifold of dimension equal to that of the parameter space.

While this fact is, of course, well known, we appear to have been the first

who have been using this fact as the basis for a consistent study of the

numerical problems for these equations. Our results have begun to show

clearly the value and power of this geometric approach.

For numerical considerations, an important aspect of this theory concerns

the estimation of the "distance" between the manifolds defined by a given dif-

ferential equation and by its discretization, respectively. This has been the

~ ~ ... ]
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topic of a series of papers by J. P. Fink and W. C. Rheinboldt with partial

support under this grant. See the earlier articles [A7], [A8] and then [6]

and [16). In particular, in the last-named paper [16] we have been the first

to analyze the case of multi-dimensional manifolds which is of increasing

importance in applications.

An essential aspect of these studies concerns the question as to the

exact definition of the error between a solution manifold and its approxima-

tion. Obviously, the error depends on which points are to be compared. In

the cited papers it was shown that this correspondence between the points on

the two manifolds has to be defined by appropriate local coordinate systems.

In other words, the resulting error is controlled by the choice of the local

coordinate system, and, since the error measure must be physically meaningful,

not all local coordinate systems are equally desirable. This question becomes

particularly acute in the vicinity of singular points where the behavior of

the solutions may be subject to change.

This connection between the choice of the local coordinate systems and

the singularity behavior of a point has led us to a closer study of admissible

coordinate systems at foldpoints. But the results in the papers [5] and [7]

also suggested that the open questions about the proper choice of the coordi-

nate system for physically meaningful error measures requires a much closer

look at the characterization of foldpoints on manifolds and at the methods for

their computations. This is the topic of the next subsection.

6. Detection and Computation of Singularities

In addition to its application to error estimation, singularity theory is

also being used to develop methods for the detection and computation of
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singular points on the solution manifold of a nonlinear parameter-dependent

equation F(z,A) - 0.

As noted in the previous subsection, the solution set of a parametrized

equation F(z,X) - 0 represents, in general, a differentiable manifold in the

combined space of the state variable and the parameter vector. This requires

a regularity assumption which is not very restrictive in applications, but

which -- from the viewpoint of singularity theory -- implies the use of suit-

able "unfoldings". In most practical problems a host of very natural unfold-

ings suggest themselves. The particular choice of unfolding parameters

affects the location and type of the resulting fold-points on the manifold and

with it also the questions raised in the previous subsection.

In the past years, our work in this area concentrated first on the compu-

tation of foldpoints by means of one of the many possible forms of augmented

equations. One approach in this direction was the use of the tangent map of

differential geometry which was exploited in the already mentioned papers [5]

and [7] and led there to a geometrically instructive and coordinate free

treatment of fold points, in general.

But these results also pointed, once again, at the need for a more

detailed study of the geometrical aspects of the singular points. In [21] it

was shown that it is possible to reformulate in our setting some of the basic

results of bifurcation theory related to computational aspects. The availa-

bility of solution manifolds opens up the various tools of differential

geometry and provides a very natural framework for the desired reformulation

of the theory. In particular, the bifurcation sets appear as cuts of the

solution manifold. This, in turn, corresponds again to the consideration of

augmented equations and hence, our new theory, does provide indeed a new

" , .. - , ." . .. . . . . ... . _ - J . -=. tr i4, ,l~l ,-- -
.
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approach to the vexing problem of the properties of the numerous augumentation

considered in the literature. In [21] the results were already used to

analyze a particularly promising augmentation for the computation of an entire

class of fold points. This work is now continuing. Some further results on

this topic were presented in [19].

The general computational problem in this area is, of course, the deter-

mination of the principal characteristic features of the solution manifold of

the given parametrized equation. This includes, in particular, the computa-

tion of the foldpoints, but covers also other features. The principal methods

used today for analyzing such manifolds are the continuation methods. But

before any such method can be applied in the case of a multi-dimensional mani-

fold, the parameter dimension has to be reduced to one. Geometrically, such a

reduction is equivalent with a restriction to some path on the manifold of the

original equation. A continuation method then computes a sequence of points

along such a path. Clearly, in general, it is not easy to develop a good pic-

ture of a p-dimensional manifold from information along one-dimensional paths.

Thus, it is not surprising that there is growing interest in computational

methods which generate multi-dimensional grids of solution points covering an

entire portion of the manifold. In [22] a new method for this'purpose was ..-

presented. It allows for the computation of the vertices of a simplicial tri-

angulation of a p-dimensional solution manifold of a parametrized equation.

An essential part of the method is a constructive algorithm for computing mov-

ing frames; that is, of orthonormal bases of the tangent spaces that vary

smoothly with their points of contact. The triangulation algorithm uses these

bases, together with a chord form of the Gauss-Newton process as corrector, to

compute the desired vertices. The Jacobian matrix of the mapping is not

required at all the vertices but only at the centers of certain local

V-
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"triangulation patches". Numerical experiments have already shown that the

method is very efficient, even around singularities. This opens up new possi-

bilities for determining the form and special features of such solution mani-

folds.

7. Finite Element Formulation of the Streamfunction-Vorticity Equations

The Navier-Stokes equations can be written in primitive variable formula-

tion, in terms of the streamfunction as a fourth order problem or as two

second order equations in the streamfunction-vorticity formulation. In the

linear case the fourth order problem for the streamfunction is the well-known

biharmonic equation. Although the primitive variable formulation has received

the most attention, the streamfunction-vorticity formulation is also of con-

siderable interest in two dimensional domains. That is partly due to the fact

that only two, as opposed to three, fields are to be computed; but it is

mainly due to the fact that the incompressibility constraint is avoided

through the introduction of the streamfunction.

Several theoretical and practical issues arising in the finite element

approximation of the streamfunction-vorticity equations have been studied.

Initially error estimates for the linear problem were investigated. Since the

velocity is expressed in terms of the derivatives of the streamfunction, it is

of practical concern to ascertain if these derivatives are optimally approxi-

mated for choices of elements. Previous analyses concerning this problem were

improved upon and the optimality of the error verified in [AlO].

Other issues arising in the finite element approximation of the stream-

function and vorticity include computations in multiply connected domains, the

use of low order elements, the incorporation of a variety of boundary

AhU
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conditions into the weak formulation, estimates for the errors in the finite %

approximations for the nonlinear problem and the recovery of the primitive

variables. A preliminary report on computations in multiply connected domains

using low continuity finite element spaces was presented in (11]. A

comprehensive report dealing with all of the theoretical and practical issues

mentioned above as well as presenting numerical examples is given in [12].

8. A Finite Element Analysis of MHD Flow

The equations governing the steady flow of incompressible electrically

conducting fluids in the presence of a given magnetic field can be expressed

as

- Au + i (MV u) + V - (xVO) - (_uXBxB) - 0

-A0 + div(ujxB) - 0 r

div u - 0 "

where u is the velocity, p the pressure, 0 the electric potential, B the mag- .

netic field and N,M given dimensionless parameters. By rewriting certain 'i

terms using vector identities and using appropriate spaces, one can obtain a <

weak formulation for this problem that is similar to one for the Navier-Stokes

equations written in terms of primitive variables (see [All]). The purpose of .

using such a weak formulation is to take advantage of the results already .

proved in (All]. Specifically, the weak formulation is to find u c u W,

L2
p e such that

a(ulv) + al(u,u,v) + b(v,p) -(f,v) for all v e

1 10 . P
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b(u X) - 0 for all X c L

where

1 Ii
a(u,v) - - Vu:Vv + (VO-(uXB))(V-(vxB))

a(uu) (UV uv UV vu)

b(y,X) - - x div v
1 L2 2 2o

and W - H1 X HI L2  e : - 0).- -O O' O

The continuity and stability conditions necessary to guarantee existence

and uniqueness of the solution of the weak problem have been proved. In addi-

tion, an error estimate for the finite element approximation of the weak prob-

lem has been obtained. These results, as well as a discussion of an iterative

method for solving the discrete problem will be presented in [13].

9. Dual Variable Transformations

The dual variable method, originally developed in the context of finite

difference discretizations of transient incompressible Navier-Stokes equations

[A9], is a technique to considerably reduce the size of the linear system to

be solved at each time step. The method involves

(1) the determination of the rank of the discrete divergence operator,
A, V

(2) the determination of a basis for the null space of A, and

(3) the calculation of a particular solution of the discrete continuity

equation.

In [8] a finite element implementation of the dual variable method is

IRS, I
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presented using quadrilateral piecewise bilinear velocity/constant pressure

elements. Algorithms for the determination of a basis for the null space of

the discrete divergence operator and a particular solution are presented.

In [9] a finite difference discretization of the Navier-Stokes equations

describing a compressible flow problem is viewed as a system defining flows on

an associated network. This observation then provides a means of applying the

dual variable method to economize on their numerical solution.

The nature of the aerodynamics in and around such structures as cavities

and deflectors or spoilers on various aircraft configurations was investigated -.

using the dual variable method [10].

A summary of the dual variable method is given in [14].

Iterative methods are under investigation for the solution of the linear-

ized finite difference discretizations involved in the dual variable method.

The generic form of dual variable system suggests a splitting in which a

Stieltjes matrix is to be solved at each step. The method has been imple-

mented for two dimensional domains and convergence properties are being inves-

tigated as part of a Ph.D. thesis.

10. Fluid Flow on Curved Domains

A finite difference scheme was derived for two-dimensional, transient,

incompressible Navier-Stokes problems in which the flow domain 0 is a bounded

C2
si7r-I-connected region for which there exists a C invertible mapping r onto

t unit square:

0 : s - [0,1]x[0,1]

• .-. . . . . . ".-
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The transformed Navier-Stokes problem is

div -ii -0
/ -/ r

--t vii Prj IJI Jkk, rk rj

subject to A tial condition
/

v(r,O) - a(x(r)) , r c S

and boundary condition

v(r,t) -o ,r c 6 S and t > 0

where, v(r,t) is velocity, p is pressure, the Jacobian matrix

J - [Xi r

[i] IJIJ
- I (J

- 1 T

#- IJIJ - lv • ".

The finite difference discretization of the above equations is proven to

be unconditionally stable and convergent. They also reduce to the well known

Krzhivitski and Ladyzhenskaya scheme [A12] for rectangular domains, e.g., T

the identity. This work was the subject of a Ph.D. Dissertation [A13] and a -

recent technical report [17].

11. Equilibrium Manifolds in Computational Mechanics

Equilibrium problems arise naturally in continuum and fluid mechanics as

a set of nonlinear equations of the form

F(z,A) - 0 (1)
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where z is from the state space Z and X is from a p dimensional parameter

space. In general, F represents some boundary value problem and hence the

state space Z is infinite dimensional. Let X - ZxA be the combined space,

then the set of solutions to (1) in DcX,

M - D((,A) I I F(z,A) - 0) (2)

defines a surface or manifold of dimension p in X. M is called the

equilibrium manifold.

The parameters A and states z may also be required to satisfy a differen-

tial equation of the form

A(x)x - G(x) (3)

where x - (z,A). We then interpret (3) as a differential equation on the man-

ifold (2), DEM for short. Equations (1) and (3) together,

FC) - 0

{A(x)x - G(x)

form what is called a differential-algebraic equation (DAE).

Two applications of interest to the investigators in which DE's occur

are:

(i) Incompressible Fluid Flow. The continuity equation is an algebraic con-

straint of the form (1) and the time-dependent Navier-Stokes equations

are the differential equation.

(ii) Punch Stretching of Sheet Metal. The principle of virtual work provides

a force equilibrium equation which defines an equilibrium manifold upon

which one seeks solutions to differential constitutive laws of the form

(3). .

... . . : .. ,' . . ,%. -' %•%% .... J C'Ydd % ,% .- a,', %' ". *' _%
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In [20], a new numerical method was presented for computer simulations of

punch stretching of sheet metal. Most current approaches to finite element

modeling of large deformation, elastic-plastic sheet metal forming use a rate

form of the equilibrium equations and then must correct at each time step to

insure that equilibrium is satisfied. Such methods are referred to as incre-

mental methods. The new method, a DEM approach discretizes the more fundamen- N

tal equilibrium equations in non-rate form and insures equilibrium of forces

at each time step. Formulating the problem as a DEM or DAF 'lso allowed for

solution of the discretized system using off-the-shelf software such as LSODI.

Numerical experimentation indicated that the DEM approach was computationally

much more efficient than the incremental approach.

12. Energy Stability of Viscous Incompressible Flows

The problem of determining sufficient conditions for the flow of a

viscous incompressible fluid to be stable under arbitrary disturbances was

examined. This problem is of importance in the study of turbulence and the

transition which occupies a region of space and subject to a prescribed velo-

city distribution on the boundary, will alter radically or only slightly in

nature if it is perturbed at some instance.

The question of stability can be addressed by either standard linear per-

turbation techniques or by the energy method; the latter is chosen in this

work. Although the great majority of stability calculations use linear sta-

bility analysis, the method has the drawback that it allows only perturbations

which are infinitesimal in magnitude. This rules out perturbations of finite I
size and hence cannot give accurate information in many cases. The energy

method allows arbitrary disturbances but its shortcoming is that the
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disturbances do not necessarily satisfy the Navier-Stokes equations, and thus

the stability criterion will be more restrictive than in the actual physical

situation. However, the energy stability analysis is based on the Navier-

Stokes equations and is nonlinear in nature due to the fact that no lineariza-

tions of the equations are done. The method is mathematically rigorous and

does give insight into the physical situation.

The question of energy stability of a flow can be formulated as a linear
I.

generalized partial differential eigenvalue problem even though the analysis

is based on the nonlinear Navier-Stokes equations. Essentially, the procedure

is to obtain an equation for dK/dt where K is the kinetic energy of the dis-

turbance, u, and then to determine conditions which guarantee that the kinetic

energy tends to zero as time increases. Using standard eigenvalue problem

where stability is governed by the dominant eigenvalue. Specifically, we have

that the flow is stable for Reynolds number less than I/A where A is the dom-

inant eigenvalue of the problem

Au -grad - A u D

div u -0, (1)

u 0 on the boundary .

Here D is the deformation tensor of the unperturbed flow.

A finite element method is used to approximate the dominant eigenvalue of

, H1
(1). In particular, the weak form considered is to find nonzero u e H

c L 2 and A c R such that

f Vu:Vv + div - A f uDV for all v H

XdJ v u - 0 for all X L2

V..
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21 1where L is the space of all functions which are square integrable and H, H1
- -O

denote the usual Sobolev spaces. To approximate the solution to the weak

problem (2), finite dimensional subspaces Vh C H1 and Wh C L2 are chosen which

depend upon a parameter O-dh<l tending to zero. The approximate problem is

defined analogous to (2) where the solution is sought in the finite dimen-

sional subspaces. Once bases for Vh and Wh are chosen, the approximate prob-

lem is equivalent to an algebraic generalized eigenvalue problem. An estimate

for the error in A and its Galerkin approximation is given in [A14].

As proposed, a code was developed which uses a mixed finite element

method for approximating the dominant eigenvalue of (1). The program was used

to determine a range of Reynolds numbers for which the flow is guaranteed to

be stable for the examples of plane shear flow and Poisseuille flow.

The first example is the simple case of flow in a channel of width O<y<d

where the initial velocity is given by the vector (ky,O), the deformation ten-

sor is given by Dij - 0 i - j and Dij - .5k for i o J, ij - 1,2 the Reynolds

number is kd2/A. The channel is assumed infinite in length. The computed

Reynolds number for a channel of length L is given below.

l/L 1 1/2 1/3 1/4 1/5

Re No. 289.87 201.42 186.975 182.11 180.01

Using the above calculations the extrapolated value at 1/L - 0 is 177.4 which

is in good agreement with the value of 177 published by Orr.

The second problem of determining the stability of Poiseuille flow in a

pipe is of more interest physically and has been studied by many authors. For

this example the formulation (1) makes sense in an unbounded domain when the

IN,
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solutions are single-valued in 8 and periodic in z. To this end, the solu-

tion is assumed of the form u(r,O,z) - U(r,a,A) ei(dz + PO) where is an

integer. This form is substituted into (1) and the following system results

Lu- v - -- rw

Lv + i(2p/r 2 u - /ro) - 03

2

Lw - iaO -Aru

r a (ru) + i v + dw - 0

u,v,w bounded at r - 0

u-v -w- 0 at r- 1

where U ((u,v,w), +u r 1 + a Lu - Lu + u/rr ar [ r2  NO~

Note that these equations form a complex one-point boundary value problem

with a singularity at the origin. The weak formulation must incorporate an

appropriate boundary condition for the velocity at r - 0. The particular weak

from considered is the following: Find u,v,weHl, c H2, A e R such that

JUr~rr dr + Clr dr + Zr v~dr - j L(r ,dr A wr dr V e H A
;v rr f Clr f2i- r ' "oa

rdr + J Cdr - i 2 dr + i f dr - 0 V C e H'r f r f 7u 1
Wrrdr + C2 Cdr + ia frdr - A ur2dr V f e H1

-fT'(ru)xdr - ifrvxdr - ifowxrdr - 0 V X c H2

2 2 2where C1 - + r , C2 -C 1 - 1

for appropriate spaces H and H2 .

171
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With this weak formulation the condition imposed on the velocity at r - 0

is rur - rv - rw - 0, which is a natural boundary condition. This problem

was discretized using piecewise linear elements. The results obtained agree

with those of Joseph and Carmi [AlS]. However, their numerical calculations

were unnecessarily complicated. For example, different techniques for the

various cases such as a - 0 and a o 0 had to be employed as well as using Fro-

benius series as starting values near the origin. Specifically, the value of

81.5 was obtained as a sure limit of stability and corresponded to the case

- 1 - 1. This agreed with Joseph and Carmi's result and confirmed the

fact that the value of R - 180, which was previously believed to be a sure

limit of stability, is incorrect. This work is discussed in a paper in

preparation [23].

b%

I
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